下側頭葉皮質ニューロンによる物体の三次元形状の表現

山根ゆか子 *^{,†} • Charles E. Connor^{*,**} * Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University 3400 N. Charles Street, Baltimore, Maryland 21218, USA ** Department of Neuroscience, Johns Hopkins University, School of Medicine 725 N. Wolfe Street, Baltimore, Maryland 21205, USA

1. はじめに

網膜に2次元的に投影された物体像の中には エッジ形状や陰影など3次元的な情報が含まれ ている. これらの情報に加え,両眼視差,眼球 運動などの情報をヒトの脳は統合し、3次元物 体の形状を表現している。3次元物体の脳内表 現については、3次元物体の部分とその配置を もとにしたモデル^{1,2)}や,異なる視点から見た少 数の2次元画像をもとにし、3次元形状を明示 的に考慮しないモデル³⁾が提唱された.またヒ トやサルの脳の研究から、いわゆる「腹側視覚 経路」が物体の形の認識に重要であることが明 らかになった⁴⁾. 例えばマカクサルを用い, こ の経路の最終段階である下側頭葉皮質のニュー ロンの性質を調べた研究では、複雑な物体像に 強く応答するニューロンが発見されている^{5,6)}. その後の研究で、両眼視差によって知覚される 奥行きのある形体に選択的に応答するニューロ ンが発見されている ⁷⁾ことから, 下側頭葉皮質 のニューロンが物体の3次元形状を表現してい る可能性が高いにもかかわらず、ほとんどの研 究で、2次元画像に対するニューロンの反応性 に主眼がおかれているため、下側頭葉皮質にお ける3次元形状の表現を推察することは難しい. そこで3次元物体を視覚刺激として用い、直接 的に下側頭葉皮質における3次元形状の表現を 明らかにしたいと考えた、ところが、限られた

実験時間の中で,無限にある3次元形状の中か ら個々のニューロンが強く応じる物体を見つけ 出し,その応答特性を詳細に調べ上げるのは非 常に困難である.本研究では,神経科学,特に 生理学において今までほとんど用いられなかっ た「進化的アルゴリズム」という手法をサル下 側葉皮質ニューロンの刺激選択性探索に導入し, 3次元形状に対する応答特性を客観的かつ効率 的に解析した.

2. 進化的アルゴリズム

個体群が環境圧力をうけて自然淘汰がおこり, より良い(生存に適した)個体群が作られると いう考えをもとにした最適化アルゴリズムをま とめて進化的アルゴリズムという. これはミシ ガン大学の Holland が考案した遺伝的アルゴリ ズム⁸⁾や、ベルリン工科大学の Rechenberg と Schwefel により開発された進化戦略⁹⁾を含む. 今日ではいろいろな応用分野で最適化の手法と して研究が進んでいるが、神経科学分野での応 用はまだほとんどない.進化的アルゴリズムに よる探索は、ランダムサーチの場合に起こる非 効率性と最急勾配法で問題になる局所解への収 束を軽減させることができるという点で優れて いる.しかし、パラメータやコーディングの一 般的手法が確立されておらず、個々の最適化問 題に対して個別に適したパラメータやコーディ ング方法を考える必要がある点と,(最適解に 近いものは見つけられても) 必ずしも最適解を 見つけることができない可能性が残る点に注意 が必要である、本研究では、ニューロンの反応

²⁰⁰⁹ 年夏季大会シンポジウム講演.

[†]現所属 理化学研究所脳科学総合研究センター

を淘汰圧力に見立て,より良い(ニューロンが よく反応する)視覚刺激を多く生成することを アルゴリズムの目標とした.具体的な方法を以 下に示す.まずランダムに生成した視覚刺激 (視覚刺激の詳細は図1A参照)を50-100個用 意し(第1世代),それぞれの刺激に対する ニューロンの応答を記録した.ニューロンの反 応の強さをもとに第2世代の候補を選択し,選 択された候補に対しニューロンの反応の強さを

Α

部分の修飾

全体の修飾

図1 A: 視覚刺激の生成. OpenGL 上で, NURBS (非均一有理Bスプライン)曲面をもとに3次 元 CG モデルを生成した. コントロールポイン トは極格子状に配置し(A左),その一部を移動 させることにより変形を加え, さまざまな閉じ た滑らかな3次元形状を表現した。中央はコン トロールポイントの3次元位置より計算される 曲面をポリゴン化し、メッシュで示したもの. 右は光源を視線と並行に設定し, 陰影をつけた もの、実際の実験ではこれに両眼視差を加えた. B上:視覚刺激の探索を行う進化的アルゴリズ ムの流れ.1から4が1通り済んだら2-4を繰 り返す.B下:刺激候補の修飾には、2種類の 方法(部分の修飾と全体の修飾)を1:1の確率 で盛り込んだ。部分の修飾では、刺激の一部分 を残して他を変化させ、全体の修飾では全体の 形状をニューロンの応答に対応して変化させた.

もとに変形を加えた.変形はもとの物体の一部 をランダムに変形させるか、もとの物体の形全 体を少し変形させた(図1B下).これを第2世 代として再びニューロンの応答を記録した.刺 激の生成とニューロンの応答の記録を8-10世 代まで繰り返した(図1B上).こうして得られ た刺激セットはニューロンの反応性を反映し、 反応の大きい刺激のバリエーションをより多く 記録することになる.

進化的アルゴリズムによる視覚刺激の 探索

進化的アルゴリズムにより生成された視覚刺 激とニューロンの発火頻度の一例を図2に示す. 第1世代ではニューロンの強い応答は見られな いが,第8世代では強い応答が多く見られる. この例のように強い応答を引き出す刺激があら われたのは,記録したニューロン全体の50% ほ どのケースであった.刺激選択性の解析には, 十分大きな反応が得られたニューロンのみを選 んで行った.

3次元手がかりに対するニューロンの 応答

進化的アルゴリズムを用いた探索により生成 された視覚刺激のうち,反応の強さが上,中, 下の刺激を選び出し(図 3A),それぞれの刺激 の3次元手がかり(陰影と両眼視差)を変化さ せ、反応の強さを比較した(図3B).例として 示したニューロンは、両眼視差あるいは陰影と しての3次元手がかりがある状態では反応する が、3次元手がかりが不十分な刺激ではほとん ど反応しないことがわかる.この傾向は,記録 した細胞全体をみても非常に顕著であることが わかった(図3E).また、光源位置を変化させ たり(図 3C), 深さ方向の刺激提示位置を変化 させても(図3D),視覚刺激の形状に対する応 答の変化に比べ反応の変化が少ないことがわか る. 光源の角度, 刺激の大きさ, あるいは提示 位置と、刺激の形状との独立性を計算してみる と,多くの細胞で強い独立性が見られた(図

第1世代

第8世代

図2 生成された世代別の視覚刺激.それぞれの世代の中から強い反応を誘発した刺激を上から 25 個選んだ. 個々の刺激の左上に下側頭葉皮質ニューロンの反応の強さを発火頻度(spikes/s)で示した.第1世代に比 ベ,第8世代では強い反応を誘発する刺激が多いことがわかる.文献 10 より改変.

3F).

5.3次元形状に対するニューロンの チューニング

ニューロンの応答を定量的に評価するために, 視覚刺激の3次元形状に対するチューニング カーブ (チューニングサーフェス)を算出した. 視覚刺激上の3次元曲面の曲率,面積重心から の相対位置,法線からなる7つのパラメータを 設定し、多次元ガウス関数を仮定してチューニ ングサーフェスを算出した(図4). この例で は, 観察者側に突き出した突起部分とその後ろ のへこみ部分にチューニングのピークがある(図 4B). よく反応した視覚刺激を見ると(図4A), チューニングピークの形状が共通していること がわかる. このように個々のニューロンのチュー ニングピークを算出し眺めてみると、曲率の次 元で興味深いバイアスが見られた. 算出した チューニングサーフェスのうち曲率(最大曲率 と最小曲率)のみを取り出し,解析したニュー ロン全体での出現確率をみると、

曲率が大きい ものの出現頻度が高いことが分かったのだ(図 5 右). このバイアスは、用いた視覚刺激全体に

おける曲率の出現頻度からでは説明ができない (図5左).このことから、曲率の大きな部分を 表現しているニューロンが多いということが示 唆される.

6. おわりに

物体の3次元形状が脳内でどのように表現さ れているのか調べるために, 固視課題遂行中の サル下側頭葉皮質ニューロンから単一細胞活動 記録を行った、多次元空間上に表現された3次 元形状に対するニューロンの選択性を効率的に 探索するために進化的アルゴリズムを用いて3 次元形状を生成し視覚刺激とした、解析した下 側頭葉皮質ニューロンには刺激の3次元形状に 強い選択性があるものが多いことが示された. また、そのチューニングカーブを3次元物体を 構成する曲面の曲率,位置,法線方向という幾 何学的パラメータを軸にとりモデル化した. 今 回報告したモデルにより、3次元物体に対する 下側頭葉ニューロンの刺激選択性はある程度の 説明がつけられることが示された. 今回の報告 の大部分は原著論文¹⁰⁾に詳細があるので参照さ れたい、今後は、他のコーディング方法(Me-

図3 ある下側頭葉皮質ニューロンの反応の強さが上、中、下の刺激(A)を選び出し、それぞれに対して3次 元手がかりを変化させた(B). 陰影をつけたもの(黒色), 陰影の代わりにランダムドットパターンをつ けたもの(灰色),陰影もドットパターンもなしのもの(白色)の3種類について両眼視差あり、なしの条 件を調べた. 立体感の感じられない条件(B右の二つ)では反応が落ちている. また,光源位置を変化さ せると刺激の2次元像は大きく変化するが、ニューロンの反応は大きく変わらない(C).ここでは、上下 あるいは左右に 90 度光源位置を変化させた、また刺激の深さ方向の提示位置を変化させても、刺激の形 の違いによる反応の違いほどは大きな変化がないことがわかる(D). E:Bのテストを行ったニューロン全 体(n=97)で、3次元手がかりがある場合(陰影あり両眼視差ありの刺激)とない場合(陰影なし両眼視 差なしのシルエット刺激)の反応の強さの違い(3D cue Index)の分布を調べた.黒色の部分は陰影また は両眼視差を要因にとり、ニューロンの反応を分散分析した結果、有意な差が出たもの、多くのニューロ ンで3次元手がかりがある場合の方が反応が非常に強い.F:陰影,大きさ,上下左右方向の提示位置, あるいは深さ方向の提示位置に対するニューロンのチューニングと、刺激の形に対するニューロンのチュー ニングの独立性を調べた.実際に記録したデータで構成した行列(例えば陰影×刺激の形)と,独立を仮 定した場合のチューニング関数の積(例えば陰影のチューニング関数と刺激の形のチューニング関数の積) との相関係数の2乗(寄与率)を独立性の強さを表す指標として分布をみた.多くのニューロンで強い独 立性が見られた(寄与率で75%以上). 文献10より改変.

図4 A:図3Aの例と同じニューロンに対して生成された視覚刺激の中で反応の高いものから25個順に並べた. 左上の数値は反応の強さ(spikes/s)を表す.反応の強い刺激では,観察者の方へ突き出したような形が共通している.B:Aのニューロンの3次元形状チューニング関数.上段の式中のGは異なるピークをもつ 多次元ガウス関数を表す.G₁およびG₂の1×標準偏差の領域を2次元の平面に投影した図がBの中段で ある.下段には、よく反応した刺激の画像上にG₁およびG₂のピークに一番近い形状があらわれている部 分にそれぞれ十字とアステリスクをつけた.反応の高い刺激で共通にあらわれている観察者方向に突き出 した突起の先端がG₁のピーク、その裏側の窪みがG₂のピークと一致している.文献10より改変.

図5 曲率の分布の比較.曲面の最大曲率は最小曲率より常に大きいので、三角形のプロットになる.どちらの曲率も正の値が凸、負の値が凹、0が平面となるので、第1象限が寒起型、第3象限がお椀型、第4象限が馬蹄型の曲面を表す.視覚刺激の曲率の分布(左)では、平面に近い曲面に分布が集中しているが、ニューロンのチューニングピークの分布(右)では強い凸の突起、および馬蹄形に分布が広がっている.アステリスクは両プロットの比較のため、視覚刺激の曲率の分布のピーク位置においた.文献10より改変.

dial Axis など)により3次元物体が表現される 可能性についても検討していくべきであろう.

最後に,私たちがリアリティーとして感ずる 物体は、今回発見された視覚刺激の3次元形状 に選択性の高い下側頭葉皮質ニューロンの活動 が担っている可能性を指摘したい、視覚的に提 示された物体像を区別するだけならば、物体の 3次元的な形状を把握することは必ずしも必要 ではない.実際,短い時間の視覚刺激の提示に より物体像を分類する課題におけるヒトのパ フォーマンスは、2次元画像をそのまま解析す る(したがって画像に含まれるエッジ形状や陰 影の手がかりから3次元形状を推察する階層が ない)フィードフォワードの階層的神経ネット ワークモデルによってよく説明できることが示 されている¹¹⁾.しかし、私たちは網膜に映る物 体像から、物体像の区別や分類をするだけでな く、その形状の意味、美しさ、便利さ、リアリ ティーなど多くの属性を見抜くことができる.

単純な区別や分類以上に,私たちが行動する上 で必要な多くの課題の中で,一見無駄に面倒と 思える下側頭葉皮質ニューロンの選択性が必要 なのではないだろうか?

文 献

- D. Marr and H. K. Nishihara: Representation and recognition of the spatial organization of three-dimensional shapes. *Proceedings of the Royal Society of London*, B200, 269–294, 1978.
- I. Biederman: Recognition-by-components: a theory of human image understanding. *Psychological Review*, 94, 115–147, 1987.
- T. Vetter, A. Hurlbert and T. Poggio: Viewbased models of 3D object recognition: invariance to imaging transformations, *Cerebral Cortex*, 5, 247–260, 1995.
- L. G. Unverleider and M. Mishkin: Two Cortical Visual Systems. D. G. Ingle, M. A. Goodale, & R. J. Q. Mansfield (eds): Analysis of Visual Behavior. MIT Press, Cambridge Massachusetts, 549–586, 1982.
- R. Desimone, T. D. Albright, C. G. Gross and C. Bruce: Stimulus-selective properties of inferior temporal neurons in the macaque. *Journal of Neuroscience*, 4, 2051–2062, 1984.

- I. Fujita, K. Tanaka, M. Ito and K. Cheng: Columns for visual features of objects in monkey inferotemporal cortex. *Nature*, 360, 343–346, 1992.
- P. Janssen, R. Vogels and G. A. Orban: Macaque inferotemporal neurons are selective for disparity-defined three-dimensional shapes. *Proceedings of National Academy of Science of the USA*, 96, 8217–8222, 1999.
- J. H. Holland: Outline for a logical theory of adaptive systems. *Journal of the ACM*, 3, 297–314, 1962
- I. Rechenberg: Cybernetic solution path of an experimental problem. Royal Aircraft Establishment Library Translation No. 1122, Ministry of Technology, Farnborough, UK, 1965.
- Y. Yamane, E. T. Carlson, K. C. Bowman, W. Zhihong and C. E. Connor: A neural code for three-dimensional object shape in macaque inferotemporal cortex. *Nature Neuroscience*, 11, 1352–1360, 2008.
- T. Serre, A. Oliva and T. Poggio: A feedforward architecture accounts for rapid categorization. *Proceedings of National Academy of Science of the USA*, **104**, 6424–6429, 2007.